Skip to content

斐波那契堆是一种数据结构,它由一组遵循最小堆或最大堆性质的树组成。我们已经在关于堆数据结构的文章中讨论过最小堆和最大堆的性质。这两种性质就是斐波那契堆中所包含的那些树的特征。

在一个斐波那契堆中,一个节点可以有两个以上的子节点,或者根本没有子节点。此外,与二项式堆和二叉堆所支持的操作相比,斐波那契堆的堆操作效率更高。

斐波那契堆中的阶是怎么定义的

斐波那契堆由一组树构成

比如下面这个斐波那契堆,根节点是3,有5组子树,所以是5阶的

这个斐波那契堆至少有F(5+2)也就是F(7)=0,1,2,3,5,8,13

第7项是13,所以这个斐波那契堆至少有13个节点

其他辅助理解的资源

斐波那契堆(博客园)


斐波那契堆的性质

斐波那契堆的重要性质如下:

  1. 它是一组最小堆序树的集合。(即父节点的值总是小于子节点的值。)
  2. 维护一个指向最小元素节点的指针。
  3. 它包含一组标记节点。(用于实现减小键值操作 )
  4. 斐波那契堆中的树是无序的,但有根节点。

斐波那契堆中节点的内存表示形式

所有树的根节点都被链接在一起,以便能够更快速地进行访问。一个父节点的子节点通过一个循环双向链表相互连接,如下所示。 使用循环双向链表有两个主要优点。

  1. 从树中删除一个节点只需花费 O(1) 的时间复杂度。
  2. 连接两个这样的链表也只需花费 O(1) 的时间复杂度。


斐波那契堆上的操作

插入

算法

insert(H, x)
    degree[x] = 0
    p[x] = NIL
    child[x] = NIL
    left[x] = x
    right[x] = x
    mark[x] = FALSE
    concatenate the root list containing x with root list H 
    if min[H] == NIL or key[x] < key[min[H]]
        then min[H] = x
    n[H] = n[H] + 1

向一个已有的斐波那契堆中插入一个节点,需遵循以下步骤:

  1. 为该元素创建一个新节点。
  2. 检查该堆是否为空。
  3. 如果堆为空,将新节点设置为根节点,并将其标记为最小节点min
  4. 否则,将该节点插入到根节点链表中,并更新最小节点min

找最小

最小元素总是由最小指针min所指向。

合并

两个斐波那契堆的合并包含以下步骤:

  1. 连接两个堆的根节点(将两个堆的根节点链表合并成一个根节点链表)。
  2. 从新的根节点链表中选择具有最小键值的节点,以此来更新最小节点指针(min 指针)。

提取最小元素(值)

提取最小元素是斐波那契堆上最重要的操作。在这个操作中,具有最小值的节点会从堆中被移除,并且树会被重新调整。 该操作遵循以下步骤:

  1. 删除最小节点。
  2. 将最小指针指向根链表中的下一个根节点。
  3. 创建一个数组,其大小等于删除操作前堆中树的最大度数。
  4. 重复执行以下操作(步骤 5 - 7),直到不存在多个度数相同的根节点为止。
  5. 将当前根节点(最小指针所指节点)的度数映射到数组对应的位置。
  6. 将下一个根节点的度数映射到数组对应的位置。
  7. 如果存在两个以上的根节点度数相同,那么对这些根节点执行合并操作,以维持最小堆的性质(即最小值位于根节点处)。

上述步骤的一种实现方式可以通过下面的例子来理解。

  1. 我们将对下面这个堆执行提取最小元素的操作。

  1. 删除最小节点,将其所有子节点添加到根节点链表中,并将最小指针设置为根节点链表中的下一个根节点。

  1. 这棵树中的最大度数为 3。创建一个大小为 4 的数组,并将后续根节点的度数映射到该数组中。

  1. 在这里,23 和 7 的度数相同,所以将它们合并。

  1. 同样,7 和 17 的度数也相同,所以也把它们合并起来。

  1. 再次,7 和 24 的度数相同,所以也将它们合并。

  1. 映射接下来的节点。

  1. 同样,52 和 21 的度数相同,所以将它们合并。

  1. 同样地,将 21 和 18 合并。

  1. 映射剩余的根节点。

  1. 最终的堆是。


降低键值以及删除节点

这些都是在 “降低键值操作” 和 “删除节点操作” 中所讨论的最重要的操作。


Python、Java 和 C/C++ 示例

Python
# Fibonacci Heap in python

import math

# Creating fibonacci tree
class FibonacciTree:
    def __init__(self, value):
        self.value = value
        self.child = []
        self.order = 0

    # Adding tree at the end of the tree
    def add_at_end(self, t):
        self.child.append(t)
        self.order = self.order + 1


# Creating Fibonacci heap
class FibonacciHeap:
    def __init__(self):
        self.trees = []
        self.least = None
        self.count = 0

    # Insert a node
    def insert_node(self, value):
        new_tree = FibonacciTree(value)
        self.trees.append(new_tree)
        if (self.least is None or value < self.least.value):
            self.least = new_tree
        self.count = self.count + 1

    # Get minimum value
    def get_min(self):
        if self.least is None:
            return None
        return self.least.value

    # Extract the minimum value
    def extract_min(self):
        smallest = self.least
        if smallest is not None:
            for child in smallest.child:
                self.trees.append(child)
            self.trees.remove(smallest)
            if self.trees == []:
                self.least = None
            else:
                self.least = self.trees[0]
                self.consolidate()
            self.count = self.count - 1
            return smallest.value

    # Consolidate the tree
    def consolidate(self):
        aux = (floor_log(self.count) + 1) * [None]

        while self.trees != []:
            x = self.trees[0]
            order = x.order
            self.trees.remove(x)
            while aux[order] is not None:
                y = aux[order]
                if x.value > y.value:
                    x, y = y, x
                x.add_at_end(y)
                aux[order] = None
                order = order + 1
            aux[order] = x

        self.least = None
        for k in aux:
            if k is not None:
                self.trees.append(k)
                if (self.least is None
                        or k.value < self.least.value):
                    self.least = k


def floor_log(x):
    return math.frexp(x)[1] - 1


fibonacci_heap = FibonacciHeap()

fibonacci_heap.insert_node(7)
fibonacci_heap.insert_node(3)
fibonacci_heap.insert_node(17)
fibonacci_heap.insert_node(24)

print('the minimum value of the fibonacci heap: {}'.format(fibonacci_heap.get_min()))

print('the minimum value removed: {}'.format(fibonacci_heap.extract_min()))
Java
// Operations on Fibonacci Heap in Java

// Node creation
class node {
  node parent;
  node left;
  node right;
  node child;
  int degree;
  boolean mark;
  int key;

  public node() {
    this.degree = 0;
    this.mark = false;
    this.parent = null;
    this.left = this;
    this.right = this;
    this.child = null;
    this.key = Integer.MAX_VALUE;
  }

  node(int x) {
    this();
    this.key = x;
  }

  void set_parent(node x) {
    this.parent = x;
  }

  node get_parent() {
    return this.parent;
  }

  void set_left(node x) {
    this.left = x;
  }

  node get_left() {
    return this.left;
  }

  void set_right(node x) {
    this.right = x;
  }

  node get_right() {
    return this.right;
  }

  void set_child(node x) {
    this.child = x;
  }

  node get_child() {
    return this.child;
  }

  void set_degree(int x) {
    this.degree = x;
  }

  int get_degree() {
    return this.degree;
  }

  void set_mark(boolean m) {
    this.mark = m;
  }

  boolean get_mark() {
    return this.mark;
  }

  void set_key(int x) {
    this.key = x;
  }

  int get_key() {
    return this.key;
  }
}

public class fibHeap {
  node min;
  int n;
  boolean trace;
  node found;

  public boolean get_trace() {
    return trace;
  }

  public void set_trace(boolean t) {
    this.trace = t;
  }

  public static fibHeap create_heap() {
    return new fibHeap();
  }

  fibHeap() {
    min = null;
    n = 0;
    trace = false;
  }

  private void insert(node x) {
    if (min == null) {
      min = x;
      x.set_left(min);
      x.set_right(min);
    } else {
      x.set_right(min);
      x.set_left(min.get_left());
      min.get_left().set_right(x);
      min.set_left(x);
      if (x.get_key() < min.get_key())
        min = x;
    }
    n += 1;
  }

  public void insert(int key) {
    insert(new node(key));
  }

  public void display() {
    display(min);
    System.out.println();
  }

  private void display(node c) {
    System.out.print("(");
    if (c == null) {
      System.out.print(")");
      return;
    } else {
      node temp = c;
      do {
        System.out.print(temp.get_key());
        node k = temp.get_child();
        display(k);
        System.out.print("->");
        temp = temp.get_right();
      } while (temp != c);
      System.out.print(")");
    }
  }

  public static void merge_heap(fibHeap H1, fibHeap H2, fibHeap H3) {
    H3.min = H1.min;

    if (H1.min != null && H2.min != null) {
      node t1 = H1.min.get_left();
      node t2 = H2.min.get_left();
      H1.min.set_left(t2);
      t1.set_right(H2.min);
      H2.min.set_left(t1);
      t2.set_right(H1.min);
    }
    if (H1.min == null || (H2.min != null && H2.min.get_key() < H1.min.get_key()))
      H3.min = H2.min;
    H3.n = H1.n + H2.n;
  }

  public int find_min() {
    return this.min.get_key();
  }

  private void display_node(node z) {
    System.out.println("right: " + ((z.get_right() == null) ? "-1" : z.get_right().get_key()));
    System.out.println("left: " + ((z.get_left() == null) ? "-1" : z.get_left().get_key()));
    System.out.println("child: " + ((z.get_child() == null) ? "-1" : z.get_child().get_key()));
    System.out.println("degree " + z.get_degree());
  }

  public int extract_min() {
    node z = this.min;
    if (z != null) {
      node c = z.get_child();
      node k = c, p;
      if (c != null) {
        do {
          p = c.get_right();
          insert(c);
          c.set_parent(null);
          c = p;
        } while (c != null && c != k);
      }
      z.get_left().set_right(z.get_right());
      z.get_right().set_left(z.get_left());
      z.set_child(null);
      if (z == z.get_right())
        this.min = null;
      else {
        this.min = z.get_right();
        this.consolidate();
      }
      this.n -= 1;
      return z.get_key();
    }
    return Integer.MAX_VALUE;
  }

  public void consolidate() {
    double phi = (1 + Math.sqrt(5)) / 2;
    int Dofn = (int) (Math.log(this.n) / Math.log(phi));
    node[] A = new node[Dofn + 1];
    for (int i = 0; i <= Dofn; ++i)
      A[i] = null;
    node w = min;
    if (w != null) {
      node check = min;
      do {
        node x = w;
        int d = x.get_degree();
        while (A[d] != null) {
          node y = A[d];
          if (x.get_key() > y.get_key()) {
            node temp = x;
            x = y;
            y = temp;
            w = x;
          }
          fib_heap_link(y, x);
          check = x;
          A[d] = null;
          d += 1;
        }
        A[d] = x;
        w = w.get_right();
      } while (w != null && w != check);
      this.min = null;
      for (int i = 0; i <= Dofn; ++i) {
        if (A[i] != null) {
          insert(A[i]);
        }
      }
    }
  }

  // Linking operation
  private void fib_heap_link(node y, node x) {
    y.get_left().set_right(y.get_right());
    y.get_right().set_left(y.get_left());

    node p = x.get_child();
    if (p == null) {
      y.set_right(y);
      y.set_left(y);
    } else {
      y.set_right(p);
      y.set_left(p.get_left());
      p.get_left().set_right(y);
      p.set_left(y);
    }
    y.set_parent(x);
    x.set_child(y);
    x.set_degree(x.get_degree() + 1);
    y.set_mark(false);
  }

  // Search operation
  private void find(int key, node c) {
    if (found != null || c == null)
      return;
    else {
      node temp = c;
      do {
        if (key == temp.get_key())
          found = temp;
        else {
          node k = temp.get_child();
          find(key, k);
          temp = temp.get_right();
        }
      } while (temp != c && found == null);
    }
  }

  public node find(int k) {
    found = null;
    find(k, this.min);
    return found;
  }

  public void decrease_key(int key, int nval) {
    node x = find(key);
    decrease_key(x, nval);
  }

  // Decrease key operation
  private void decrease_key(node x, int k) {
    if (k > x.get_key())
      return;
    x.set_key(k);
    node y = x.get_parent();
    if (y != null && x.get_key() < y.get_key()) {
      cut(x, y);
      cascading_cut(y);
    }
    if (x.get_key() < min.get_key())
      min = x;
  }

  // Cut operation
  private void cut(node x, node y) {
    x.get_right().set_left(x.get_left());
    x.get_left().set_right(x.get_right());

    y.set_degree(y.get_degree() - 1);

    x.set_right(null);
    x.set_left(null);
    insert(x);
    x.set_parent(null);
    x.set_mark(false);
  }

  private void cascading_cut(node y) {
    node z = y.get_parent();
    if (z != null) {
      if (y.get_mark() == false)
        y.set_mark(true);
      else {
        cut(y, z);
        cascading_cut(z);
      }
    }
  }

  // Delete operations
  public void delete(node x) {
    decrease_key(x, Integer.MIN_VALUE);
    int p = extract_min();
  }

  public static void main(String[] args) {
    fibHeap obj = create_heap();
    obj.insert(7);
    obj.insert(26);
    obj.insert(30);
    obj.insert(39);
    obj.insert(10);
    obj.display();

    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
  }
}
C
// Operations on a Fibonacci heap in C

#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct _NODE {
  int key;
  int degree;
  struct _NODE *left_sibling;
  struct _NODE *right_sibling;
  struct _NODE *parent;
  struct _NODE *child;
  bool mark;
  bool visited;
} NODE;

typedef struct fibanocci_heap {
  int n;
  NODE *min;
  int phi;
  int degree;
} FIB_HEAP;

FIB_HEAP *make_fib_heap();
void insertion(FIB_HEAP *H, NODE *new, int val);
NODE *extract_min(FIB_HEAP *H);
void consolidate(FIB_HEAP *H);
void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x);
NODE *find_min_node(FIB_HEAP *H);
void decrease_key(FIB_HEAP *H, NODE *node, int key);
void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node);
void cascading_cut(FIB_HEAP *H, NODE *parent_node);
void Delete_Node(FIB_HEAP *H, int dec_key);

FIB_HEAP *make_fib_heap() {
  FIB_HEAP *H;
  H = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
  H->n = 0;
  H->min = NULL;
  H->phi = 0;
  H->degree = 0;
  return H;
}

// Printing the heap
void print_heap(NODE *n) {
  NODE *x;
  for (x = n;; x = x->right_sibling) {
    if (x->child == NULL) {
      printf("node with no child (%d) \n", x->key);
    } else {
      printf("NODE(%d) with child (%d)\n", x->key, x->child->key);
      print_heap(x->child);
    }
    if (x->right_sibling == n) {
      break;
    }
  }
}

// Inserting nodes
void insertion(FIB_HEAP *H, NODE *new, int val) {
  new = (NODE *)malloc(sizeof(NODE));
  new->key = val;
  new->degree = 0;
  new->mark = false;
  new->parent = NULL;
  new->child = NULL;
  new->visited = false;
  new->left_sibling = new;
  new->right_sibling = new;
  if (H->min == NULL) {
    H->min = new;
  } else {
    H->min->left_sibling->right_sibling = new;
    new->right_sibling = H->min;
    new->left_sibling = H->min->left_sibling;
    H->min->left_sibling = new;
    if (new->key < H->min->key) {
      H->min = new;
    }
  }
  (H->n)++;
}

// Find min node
NODE *find_min_node(FIB_HEAP *H) {
  if (H == NULL) {
    printf(" \n Fibonacci heap not yet created \n");
    return NULL;
  } else
    return H->min;
}

// Union operation
FIB_HEAP *unionHeap(FIB_HEAP *H1, FIB_HEAP *H2) {
  FIB_HEAP *Hnew;
  Hnew = make_fib_heap();
  Hnew->min = H1->min;

  NODE *temp1, *temp2;
  temp1 = Hnew->min->right_sibling;
  temp2 = H2->min->left_sibling;

  Hnew->min->right_sibling->left_sibling = H2->min->left_sibling;
  Hnew->min->right_sibling = H2->min;
  H2->min->left_sibling = Hnew->min;
  temp2->right_sibling = temp1;

  if ((H1->min == NULL) || (H2->min != NULL && H2->min->key < H1->min->key))
    Hnew->min = H2->min;
  Hnew->n = H1->n + H2->n;
  return Hnew;
}

// Calculate the degree
int cal_degree(int n) {
  int count = 0;
  while (n > 0) {
    n = n / 2;
    count++;
  }
  return count;
}

// Consolidate function
void consolidate(FIB_HEAP *H) {
  int degree, i, d;
  degree = cal_degree(H->n);
  NODE *A[degree], *x, *y, *z;
  for (i = 0; i <= degree; i++) {
    A[i] = NULL;
  }
  x = H->min;
  do {
    d = x->degree;
    while (A[d] != NULL) {
      y = A[d];
      if (x->key > y->key) {
        NODE *exchange_help;
        exchange_help = x;
        x = y;
        y = exchange_help;
      }
      if (y == H->min)
        H->min = x;
      fib_heap_link(H, y, x);
      if (y->right_sibling == x)
        H->min = x;
      A[d] = NULL;
      d++;
    }
    A[d] = x;
    x = x->right_sibling;
  } while (x != H->min);

  H->min = NULL;
  for (i = 0; i < degree; i++) {
    if (A[i] != NULL) {
      A[i]->left_sibling = A[i];
      A[i]->right_sibling = A[i];
      if (H->min == NULL) {
        H->min = A[i];
      } else {
        H->min->left_sibling->right_sibling = A[i];
        A[i]->right_sibling = H->min;
        A[i]->left_sibling = H->min->left_sibling;
        H->min->left_sibling = A[i];
        if (A[i]->key < H->min->key) {
          H->min = A[i];
        }
      }
      if (H->min == NULL) {
        H->min = A[i];
      } else if (A[i]->key < H->min->key) {
        H->min = A[i];
      }
    }
  }
}

// Linking
void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x) {
  y->right_sibling->left_sibling = y->left_sibling;
  y->left_sibling->right_sibling = y->right_sibling;

  if (x->right_sibling == x)
    H->min = x;

  y->left_sibling = y;
  y->right_sibling = y;
  y->parent = x;

  if (x->child == NULL) {
    x->child = y;
  }
  y->right_sibling = x->child;
  y->left_sibling = x->child->left_sibling;
  x->child->left_sibling->right_sibling = y;
  x->child->left_sibling = y;
  if ((y->key) < (x->child->key))
    x->child = y;

  (x->degree)++;
}

// Extract min
NODE *extract_min(FIB_HEAP *H) {
  if (H->min == NULL)
    printf("\n The heap is empty");
  else {
    NODE *temp = H->min;
    NODE *pntr;
    pntr = temp;
    NODE *x = NULL;
    if (temp->child != NULL) {
      x = temp->child;
      do {
        pntr = x->right_sibling;
        (H->min->left_sibling)->right_sibling = x;
        x->right_sibling = H->min;
        x->left_sibling = H->min->left_sibling;
        H->min->left_sibling = x;
        if (x->key < H->min->key)
          H->min = x;
        x->parent = NULL;
        x = pntr;
      } while (pntr != temp->child);
    }

    (temp->left_sibling)->right_sibling = temp->right_sibling;
    (temp->right_sibling)->left_sibling = temp->left_sibling;
    H->min = temp->right_sibling;

    if (temp == temp->right_sibling && temp->child == NULL)
      H->min = NULL;
    else {
      H->min = temp->right_sibling;
      consolidate(H);
    }
    H->n = H->n - 1;
    return temp;
  }
  return H->min;
}

void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node) {
  NODE *temp_parent_check;

  if (node_to_be_decrease == node_to_be_decrease->right_sibling)
    parent_node->child = NULL;

  node_to_be_decrease->left_sibling->right_sibling = node_to_be_decrease->right_sibling;
  node_to_be_decrease->right_sibling->left_sibling = node_to_be_decrease->left_sibling;
  if (node_to_be_decrease == parent_node->child)
    parent_node->child = node_to_be_decrease->right_sibling;
  (parent_node->degree)--;

  node_to_be_decrease->left_sibling = node_to_be_decrease;
  node_to_be_decrease->right_sibling = node_to_be_decrease;
  H->min->left_sibling->right_sibling = node_to_be_decrease;
  node_to_be_decrease->right_sibling = H->min;
  node_to_be_decrease->left_sibling = H->min->left_sibling;
  H->min->left_sibling = node_to_be_decrease;

  node_to_be_decrease->parent = NULL;
  node_to_be_decrease->mark = false;
}

void cascading_cut(FIB_HEAP *H, NODE *parent_node) {
  NODE *aux;
  aux = parent_node->parent;
  if (aux != NULL) {
    if (parent_node->mark == false) {
      parent_node->mark = true;
    } else {
      cut(H, parent_node, aux);
      cascading_cut(H, aux);
    }
  }
}

void decrease_key(FIB_HEAP *H, NODE *node_to_be_decrease, int new_key) {
  NODE *parent_node;
  if (H == NULL) {
    printf("\n FIbonacci heap not created ");
    return;
  }
  if (node_to_be_decrease == NULL) {
    printf("Node is not in the heap");
  }

  else {
    if (node_to_be_decrease->key < new_key) {
      printf("\n Invalid new key for decrease key operation \n ");
    } else {
      node_to_be_decrease->key = new_key;
      parent_node = node_to_be_decrease->parent;
      if ((parent_node != NULL) && (node_to_be_decrease->key < parent_node->key)) {
        printf("\n cut called");
        cut(H, node_to_be_decrease, parent_node);
        printf("\n cascading cut called");
        cascading_cut(H, parent_node);
      }
      if (node_to_be_decrease->key < H->min->key) {
        H->min = node_to_be_decrease;
      }
    }
  }
}

void *find_node(FIB_HEAP *H, NODE *n, int key, int new_key) {
  NODE *find_use = n;
  NODE *f = NULL;
  find_use->visited = true;
  if (find_use->key == key) {
    find_use->visited = false;
    f = find_use;
    decrease_key(H, f, new_key);
  }
  if (find_use->child != NULL) {
    find_node(H, find_use->child, key, new_key);
  }
  if ((find_use->right_sibling->visited != true)) {
    find_node(H, find_use->right_sibling, key, new_key);
  }

  find_use->visited = false;
}

FIB_HEAP *insertion_procedure() {
  FIB_HEAP *temp;
  int no_of_nodes, ele, i;
  NODE *new_node;
  temp = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
  temp = NULL;
  if (temp == NULL) {
    temp = make_fib_heap();
  }
  printf(" \n enter number of nodes to be insert = ");
  scanf("%d", &no_of_nodes);
  for (i = 1; i <= no_of_nodes; i++) {
    printf("\n node %d and its key value = ", i);
    scanf("%d", &ele);
    insertion(temp, new_node, ele);
  }
  return temp;
}
void Delete_Node(FIB_HEAP *H, int dec_key) {
  NODE *p = NULL;
  find_node(H, H->min, dec_key, -5000);
  p = extract_min(H);
  if (p != NULL)
    printf("\n Node deleted");
  else
    printf("\n Node not deleted:some error");
}

int main(int argc, char **argv) {
  NODE *new_node, *min_node, *extracted_min, *node_to_be_decrease, *find_use;
  FIB_HEAP *heap, *h1, *h2;
  int operation_no, new_key, dec_key, ele, i, no_of_nodes;
  heap = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
  heap = NULL;
  while (1) {
    printf(" \n Operations \n 1. Create Fibonacci heap \n 2. Insert nodes into fibonacci heap \n 3. Find min \n 4. Union \n 5. Extract min \n 6. Decrease key \n 7.Delete node \n 8. print heap \n 9. exit \n enter operation_no = ");
    scanf("%d", &operation_no);

    switch (operation_no) {
      case 1:
        heap = make_fib_heap();
        break;

      case 2:
        if (heap == NULL) {
          heap = make_fib_heap();
        }
        printf(" enter number of nodes to be insert = ");
        scanf("%d", &no_of_nodes);
        for (i = 1; i <= no_of_nodes; i++) {
          printf("\n node %d and its key value = ", i);
          scanf("%d", &ele);
          insertion(heap, new_node, ele);
        }
        break;

      case 3:
        min_node = find_min_node(heap);
        if (min_node == NULL)
          printf("No minimum value");
        else
          printf("\n min value = %d", min_node->key);
        break;

      case 4:
        if (heap == NULL) {
          printf("\n no FIbonacci heap created \n ");
          break;
        }
        h1 = insertion_procedure();
        heap = unionHeap(heap, h1);
        printf("Unified Heap:\n");
        print_heap(heap->min);
        break;

      case 5:
        if (heap == NULL)
          printf("Empty Fibonacci heap");
        else {
          extracted_min = extract_min(heap);
          printf("\n min value = %d", extracted_min->key);
          printf("\n Updated heap: \n");
          print_heap(heap->min);
        }
        break;

      case 6:
        if (heap == NULL)
          printf("Fibonacci heap is empty");
        else {
          printf(" \n node to be decreased = ");
          scanf("%d", &dec_key);
          printf(" \n enter the new key = ");
          scanf("%d", &new_key);
          find_use = heap->min;
          find_node(heap, find_use, dec_key, new_key);
          printf("\n Key decreased- Corresponding heap:\n");
          print_heap(heap->min);
        }
        break;
      case 7:
        if (heap == NULL)
          printf("Fibonacci heap is empty");
        else {
          printf(" \n Enter node key to be deleted = ");
          scanf("%d", &dec_key);
          Delete_Node(heap, dec_key);
          printf("\n Node Deleted- Corresponding heap:\n");
          print_heap(heap->min);
          break;
        }
      case 8:
        print_heap(heap->min);
        break;

      case 9:
        free(new_node);
        free(heap);
        exit(0);

      default:
        printf("Invalid choice ");
    }
  }
}
C++
// Operations on a Fibonacci heap in C++

#include <cmath>
#include <cstdlib>
#include <iostream>

using namespace std;

// Node creation
struct node {
  int n;
  int degree;
  node *parent;
  node *child;
  node *left;
  node *right;
  char mark;

  char C;
};

// Implementation of Fibonacci heap
class FibonacciHeap {
   private:
  int nH;

  node *H;

   public:
  node *InitializeHeap();
  int Fibonnaci_link(node *, node *, node *);
  node *Create_node(int);
  node *Insert(node *, node *);
  node *Union(node *, node *);
  node *Extract_Min(node *);
  int Consolidate(node *);
  int Display(node *);
  node *Find(node *, int);
  int Decrease_key(node *, int, int);
  int Delete_key(node *, int);
  int Cut(node *, node *, node *);
  int Cascase_cut(node *, node *);
  FibonacciHeap() { H = InitializeHeap(); }
};

// Initialize heap
node *FibonacciHeap::InitializeHeap() {
  node *np;
  np = NULL;
  return np;
}

// Create node
node *FibonacciHeap::Create_node(int value) {
  node *x = new node;
  x->n = value;
  return x;
}

// Insert node
node *FibonacciHeap::Insert(node *H, node *x) {
  x->degree = 0;
  x->parent = NULL;
  x->child = NULL;
  x->left = x;
  x->right = x;
  x->mark = 'F';
  x->C = 'N';
  if (H != NULL) {
    (H->left)->right = x;
    x->right = H;
    x->left = H->left;
    H->left = x;
    if (x->n < H->n)
      H = x;
  } else {
    H = x;
  }
  nH = nH + 1;
  return H;
}

// Create linking
int FibonacciHeap::Fibonnaci_link(node *H1, node *y, node *z) {
  (y->left)->right = y->right;
  (y->right)->left = y->left;
  if (z->right == z)
    H1 = z;
  y->left = y;
  y->right = y;
  y->parent = z;

  if (z->child == NULL)
    z->child = y;

  y->right = z->child;
  y->left = (z->child)->left;
  ((z->child)->left)->right = y;
  (z->child)->left = y;

  if (y->n < (z->child)->n)
    z->child = y;
  z->degree++;
}

// Union Operation
node *FibonacciHeap::Union(node *H1, node *H2) {
  node *np;
  node *H = InitializeHeap();
  H = H1;
  (H->left)->right = H2;
  (H2->left)->right = H;
  np = H->left;
  H->left = H2->left;
  H2->left = np;
  return H;
}

// Display the heap
int FibonacciHeap::Display(node *H) {
  node *p = H;
  if (p == NULL) {
    cout << "Empty Heap" << endl;
    return 0;
  }
  cout << "Root Nodes: " << endl;

  do {
    cout << p->n;
    p = p->right;
    if (p != H) {
      cout << "-->";
    }
  } while (p != H && p->right != NULL);
  cout << endl;
}

// Extract min
node *FibonacciHeap::Extract_Min(node *H1) {
  node *p;
  node *ptr;
  node *z = H1;
  p = z;
  ptr = z;
  if (z == NULL)
    return z;

  node *x;
  node *np;

  x = NULL;

  if (z->child != NULL)
    x = z->child;

  if (x != NULL) {
    ptr = x;
    do {
      np = x->right;
      (H1->left)->right = x;
      x->right = H1;
      x->left = H1->left;
      H1->left = x;
      if (x->n < H1->n)
        H1 = x;

      x->parent = NULL;
      x = np;
    } while (np != ptr);
  }

  (z->left)->right = z->right;
  (z->right)->left = z->left;
  H1 = z->right;

  if (z == z->right && z->child == NULL)
    H = NULL;

  else {
    H1 = z->right;
    Consolidate(H1);
  }
  nH = nH - 1;
  return p;
}

// Consolidation Function
int FibonacciHeap::Consolidate(node *H1) {
  int d, i;
  float f = (log(nH)) / (log(2));
  int D = f;
  node *A[D];

  for (i = 0; i <= D; i++)
    A[i] = NULL;

  node *x = H1;
  node *y;
  node *np;
  node *pt = x;

  do {
    pt = pt->right;

    d = x->degree;

    while (A[d] != NULL)

    {
      y = A[d];

      if (x->n > y->n)

      {
        np = x;

        x = y;

        y = np;
      }

      if (y == H1)
        H1 = x;
      Fibonnaci_link(H1, y, x);
      if (x->right == x)
        H1 = x;
      A[d] = NULL;
      d = d + 1;
    }

    A[d] = x;
    x = x->right;

  }

  while (x != H1);
  H = NULL;
  for (int j = 0; j <= D; j++) {
    if (A[j] != NULL) {
      A[j]->left = A[j];
      A[j]->right = A[j];
      if (H != NULL) {
        (H->left)->right = A[j];
        A[j]->right = H;
        A[j]->left = H->left;
        H->left = A[j];
        if (A[j]->n < H->n)
          H = A[j];
      } else {
        H = A[j];
      }
      if (H == NULL)
        H = A[j];
      else if (A[j]->n < H->n)
        H = A[j];
    }
  }
}

// Decrease Key Operation
int FibonacciHeap::Decrease_key(node *H1, int x, int k) {
  node *y;
  if (H1 == NULL) {
    cout << "The Heap is Empty" << endl;
    return 0;
  }
  node *ptr = Find(H1, x);
  if (ptr == NULL) {
    cout << "Node not found in the Heap" << endl;
    return 1;
  }

  if (ptr->n < k) {
    cout << "Entered key greater than current key" << endl;
    return 0;
  }
  ptr->n = k;
  y = ptr->parent;
  if (y != NULL && ptr->n < y->n) {
    Cut(H1, ptr, y);
    Cascase_cut(H1, y);
  }

  if (ptr->n < H->n)
    H = ptr;

  return 0;
}

// Cutting Function
int FibonacciHeap::Cut(node *H1, node *x, node *y)

{
  if (x == x->right)
    y->child = NULL;
  (x->left)->right = x->right;
  (x->right)->left = x->left;
  if (x == y->child)
    y->child = x->right;
  y->degree = y->degree - 1;
  x->right = x;
  x->left = x;
  (H1->left)->right = x;
  x->right = H1;
  x->left = H1->left;
  H1->left = x;
  x->parent = NULL;
  x->mark = 'F';
}

// Cascade cut
int FibonacciHeap::Cascase_cut(node *H1, node *y) {
  node *z = y->parent;
  if (z != NULL) {
    if (y->mark == 'F') {
      y->mark = 'T';
    } else

    {
      Cut(H1, y, z);
      Cascase_cut(H1, z);
    }
  }
}

// Search function
node *FibonacciHeap::Find(node *H, int k) {
  node *x = H;
  x->C = 'Y';
  node *p = NULL;
  if (x->n == k) {
    p = x;
    x->C = 'N';
    return p;
  }

  if (p == NULL) {
    if (x->child != NULL)
      p = Find(x->child, k);
    if ((x->right)->C != 'Y')
      p = Find(x->right, k);
  }

  x->C = 'N';
  return p;
}

// Deleting key
int FibonacciHeap::Delete_key(node *H1, int k) {
  node *np = NULL;
  int t;
  t = Decrease_key(H1, k, -5000);
  if (!t)
    np = Extract_Min(H);
  if (np != NULL)
    cout << "Key Deleted" << endl;
  else
    cout << "Key not Deleted" << endl;
  return 0;
}

int main() {
  int n, m, l;
  FibonacciHeap fh;
  node *p;
  node *H;
  H = fh.InitializeHeap();

  p = fh.Create_node(7);
  H = fh.Insert(H, p);
  p = fh.Create_node(3);
  H = fh.Insert(H, p);
  p = fh.Create_node(17);
  H = fh.Insert(H, p);
  p = fh.Create_node(24);
  H = fh.Insert(H, p);

  fh.Display(H);

  p = fh.Extract_Min(H);
  if (p != NULL)
    cout << "The node with minimum key: " << p->n << endl;
  else
    cout << "Heap is empty" << endl;

  m = 26;
  l = 16;
  fh.Decrease_key(H, m, l);

  m = 16;
  fh.Delete_key(H, m);
}

复杂度

操作复杂度
插入O(1)
找最小O(1)
合并O(1)
提取最小值O(log n)
降低键值O(1)
删除节点O(log n)

斐波那契堆的应用

为了改善迪杰斯特拉算法的渐进运行时间。